CA1 O-LM
* indicates new v2.0 neuron type
Name Supertype (ID:Family:Type:Subregion)
CA1 (i)1002 O-LM S121404:O-LM Family:O-LM-like:CA1

Name derivation
This is a canonical CA1 interneuron. CA1 distinguishes these cells from O-LM cells in other subregions. O-LM stands for "Oriens (dendrites) - Lacunosum-Moleculare (axons)."

Synonym(s)
CA1 horizontal cell
CA1 horizontal O-A interneurone
CA1 O-LM cell
CA1 O-LM interneuron
CA1 OLM cell
CA1 oriens lacunosum-molecular-projecting interneuron
CA1 oriens-alveus/lacunosum-moleculare interneuron
CA1 oriens-lacunosum moleculare interneuron

List of articles
Click here to view the list
Ali AB  (1998) J Physiol
Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus.
Ali AB, Thomson AM.
J Physiol, 1998 Feb 15, 507 ( Pt 1), Pages: 185 - 199
PMID: 9490837; DOI: 10.1111/j.1469-7793.1998.185bu.x
Tags: morphology, connectivity, synapse probabilities
Amaral D  (2007) The Hippocampus Book
Hippocampal Neuroanatomy
Amaral D, Lavenex P.
The Hippocampus Book, 2007, Pages: 35 - 112
ISBN: 9780195100273
Tags: morphology, membrane biophysics, connectivity, firing patterns, synapse probabilities
Bartos M  (2010) Hippocampal Microcircuits: A Computational Modeler's Resource Book
Fast and Slow GABAergic Transmission in Hippocampal Circuits
Bartos M, Sauer JF, Vida I, Kulik A.
Hippocampal Microcircuits: A Computational Modeler's Resource Book, 2010, Pages: 129 - 162
ISBN: 9781441909954
Tags: morphology, connectivity, synapse probabilities
Forro T  (2015) Cerebral Cortex
Temporal Organization of GABAergic Interneurons in the Intermediate CA1 Hippocampus During Network Oscillations
Forro T, Valenti O, Lasztoczi B, Klausberger T.
Cerebral Cortex, 2015, Pages: 1228 - 1240
PMID: 24275828
Tags: phases
Freund TF  (1996) Hippocampus
Interneurons of the hippocampus.
Freund TF, Buzsaki G.
Hippocampus, 1996, 6 (4), Pages: 347 - 470
PMID: 8915675; DOI: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
Tags: morphology, marker, connectivity, synapse probabilities
Hajos N  (1997) J Neurosci
Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells.
Hajos N, Mody I.
J Neurosci, 1997 Nov 1, 17 (21), Pages: 8427 - 8442
PMID: 9334415
Tags: morphology, connectivity, synapse probabilities
Katona L  (2014) Neuron
Sleep and movement differentiates actions of two types of somatostatin-expressing GABAergic interneuron in rat hippocampus.
Katona L, Lapray D, Viney TJ, Oulhaj A, Borhegyi Z, Micklem BR, Klausberger T, Somogyi P..
Neuron, 2014, Pages: 872 - 886
PMID: 24794095
Tags: phases
Klausberger T  (2003) Nature
Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo.
Klausberger T, Magill PJ, Marton LF, Roberts JD, Cobden PM, Buzsaki G, Somogyi P.
Nature, 2003 Feb 20, 421 (6925), Pages: 844 - 848
PMID: 12594513; DOI: 10.1038/nature01374
Tags: phases
Klausberger T  (2008) Science
Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations.
Klausberger T, Somogyi P.
Science, 2008 Jul 4, 321 (5885), Pages: 53 - 57
PMID: 18599766; DOI: 10.1126/science.1149381
Tags: morphology, marker, connectivity, synapse probabilities
Klausberger T  (2009) Eur J Neurosci
GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus.
Klausberger T.
Eur J Neurosci, 2009 Sep, 30 (6), Pages: 947 - 957
PMID: 19735288; DOI: 10.1111/j.1460-9568.2009.06913.x
Tags: morphology, marker, connectivity, synapse probabilities
Lopez-Pigozzi D  (2016) eNeuro
Altered Oscillatory Dynamics of CA1 Parvalbumin Basket Cells During Theta-Gamma Rhythmopathies of Temporal Lobe Epilepsy
Lopez-Pigozzi D, Laurent F, Brotons-Mas JR, Valderrama M, Valero M, Fernandez-Lamo I, Cid E, Gomez-Dominguez D, Gal B, Lde la Prida LM.
eNeuro, 2016, Pages: 0 - 0
PMID: 27896315
Tags: phases
Losonczy A  (2002) J Physiol
Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones.
Losonczy A, Zhang L, Shigemoto R, Somogyi P, Nusser Z.
J Physiol, 2002 Jul 1, 542 (Pt 1), Pages: 193 - 210
PMID: 12096061; DOI: 10.1113/jphysiol.2002.020024
Tags: morphology, marker, connectivity, synapse probabilities
Maccaferri G  (2000) J Physiol
Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro.
Maccaferri G, Roberts JD, Szucs P, Cottingham CA, Somogyi P.
J Physiol, 2000 Apr 1, 524 Pt 1, Pages: 91 - 116
PMID: 10747186; DOI: 10.1111/j.1469-7793.2000.t01-3-00091.x
Tags: morphology, marker, connectivity, synapse probabilities
Martina M  (2000) Science
Distal initiation and active propagation of action potentials in interneuron dendrites.
Martina M, Vida I, Jonas P.
Science, 2000 Jan 14, 287 (5451), Pages: 295 - 300
PMID: 10634782
Tags: membrane biophysics, synapse probabilities
McBain CJ  (1994) J Neurosci
Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission.
McBain CJ, DiChiara TJ, Kauer JA.
J Neurosci, 1994 Jul, 14 (7), Pages: 4433 - 4445
PMID: 7517996
Tags: morphology, connectivity, synapse probabilities
Royer S  (2020) Nature Neuroscience
Control of Timing, Rate and Bursts of Hippocampal Place Cells by Dendritic and Somatic Inhibition
Royer S, Zemelman BV, Losonczy A, Kim J, Chance F, Magee JC, Buzsaki G.
Nature Neuroscience, 2020, Pages: 769 - 775
PMID: 22446878
Tags: phases
Sakalar E  (2022) Science
Neurogliaform cells dynamically decouple neuronal synchrony between brain areas
Sakalar E, Klausberger T, Lasztoczi B.
Science, 2022, 377 (6603), Pages: 324 - 328
PMID: 35857593; DOI: 10.1126/science.abo3355
Tags: phases
Sik A  (1995) J Neurosci
Hippocampal CA1 interneurons: an in vivo intracellular labeling study.
Sik A, Penttonen M, Ylinen A, Buzsaki G.
J Neurosci, 1995 Oct, 15 (10), Pages: 6651 - 6665
PMID: 7472426
Tags: morphology, marker, membrane biophysics, connectivity, firing patterns, synapse probabilities
Somogyi P  (2005) J Physiol
Defined types of cortical interneurone structure space and spike timing in the hippocampus.
Somogyi P, Klausberger T.
J Physiol, 2005 Jan 1, 562 (Pt 1), Pages: 9 - 26
PMID: 15539390; DOI: 10.1113/jphysiol.2004.078915
Tags: morphology, marker, connectivity, synapse probabilities
Somogyi P  (2010) Handbook of Brain Microcircuits
Chapter: Hippocampus: Intrinsic organisation
Somogyi P.
Handbook of Brain Microcircuits, 2010, Pages: 148 - 164
ISBN: 9780195389883
Tags: morphology, connectivity, synapse probabilities
Spruston N  (2007) The Hippocampus Book
Chapter 5: Structural and functional properties of hippocampal neurons
Spruston N, McBain C.
The Hippocampus Book, 2007, Pages: 133 - 200
ISBN: 9780195100273
Tags: morphology, connectivity, firing patterns, synapse probabilities
Svoboda KR  (1999) J Neurosci
Opioid receptor subtype expression defines morphologically distinct classes of hippocampal interneurons.
Svoboda KR, Adams CE, Lupica CR.
J Neurosci, 1999 Jan 1, 19 (1), Pages: 85 - 95
PMID: 9870941
Tags: morphology, connectivity, synapse probabilities
Tukker JJ  (2007) Journal of Neuroscience
Cell Type-Specific Tuning of Hippocampal Interneuron Firing During Gamma Oscillations in Vivo
Tukker JJ, Fuentealba P, Hartwich K, Somogyi P, Klausberger T.
Journal of Neuroscience, 2007, Pages: 8184 - 8189
PMID: 17670965
Tags: phases
Vida I  (2010) Hippocampal Microcircuits: A Computational Modeler's Resource Book
Morphology of Hippocampal Neurons
Vida I.
Hippocampal Microcircuits: A Computational Modeler's Resource Book, 2010, Pages: 27 - 68
ISBN: 9781441909954
Tags: morphology, marker, connectivity, synapse probabilities
Zemankovics R  (2010) J Physiol
Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics.
Zemankovics R, Kali S, Paulsen O, Freund TF, Hajos N.
J Physiol, 2010 Jun 15, 588 (Pt 12), Pages: 2109 - 2132
PMID: 20421280; DOI: 10.1113/jphysiol.2009.185975
Tags: morphology, synapse probabilities

Supplemental PMIDs

List of Hippocampome.org to NeuroMorpho.Org mappings
Click here to view the list of mappings
  • Esclapez
  • McBain
    • RC-2011-06-30-1 (fits the general description of "CA1 O-LM" or "CA1 Oriens-Bistratified" based on the distribution of axons and dendrites)
    • RC-2011-07-12-3 (fits the general description of "CA1 O-LM" based on the distribution of axons and dendrites)
    • RC-2011-07-12-5 (fits the general description of "CA1 O-LM" or "CA1 Oriens-Bistratified" based on the distribution of axons and dendrites)
    • more ...
  • Topolnik
  • Williams

  • Morphology
    Soma
    CA1:SO
    Axons
    CA1:SLM
    Dendrites
    CA1:SO

    Representative figure
    Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones.
    Losonczy A, Zhang L, Shigemoto R, Somogyi P, Nusser Z
    J Physiol, 2002 Jul 1, 542 (Pt 1), pages: 193 - 210
    PMID: 12096061; DOI: 10.1113/jphysiol.2002.020024


    "Figure 1. Properties of [the CA1] O-LM [oriens-lacunosum-moleculare] cells A {CA1 O-LM} and C {CA1 Recurrent O-LM}, two cells with similar dendritic and axonal patterns (Aa and Ca)"


    Molecular markers
    Positive
    AR-beta1 (inference)
    Gaba-a-alpha (multiple confirming inferences)
    mGluR1
    mGluR1a (confirmed by inference)
    mGluR5
    NPY
    PV
    SOM (confirmed by inference)
    Sub P Rec
    Negative
    5HT-3 (multiple confirming inferences)
    AR-beta2 (multiple confirming inferences)
    CB1 (multiple confirming inferences)
    CCK (multiple confirming inferences)
    CR (multiple confirming inferences)
    ENK (multiple confirming inferences)
    ErbB4 (multiple confirming inferences)
    GABAa\alpha 6 (inference)
    MOR (multiple confirming inferences)
    vGluT3 (multiple confirming inferences)
    VIP (multiple confirming inferences)
    Mixed expression
    CB (subtypes)

    Electrophysiological properties
    Key: [range] OR representative value±SD (measurements); Number of sources (total measurements): [min , max]

    Slow afterhyperpolarizing potential amplitude (Slow AHP): 4 mV (1); 1 source
    Threshold potential (Vthresh): 32.3 mV (1); 2 sources (2): [14 , 32.3]
    Fast afterhyperpolaziring potential amplitude (Fast AHP): 20.4 mV (1); 2 sources (2): [16 , 20.4]
    Action potential amplitude (APampl): 81.8 mV (1); 2 sources (2): [54 , 81.8]
    Sag ratio: 0.6 (1); 1 source
    Action potential width (APwidth): 0.88 ms (1); 1 source

    Notes
    This cell type is a merger of CA1 (-)1002 oriens-lacunosum moleculare (O-LM) neurons, CA1 (-)1003 oriens-lacunosum moleculare (O-LM) neurons, and CA1 (-)1102 oriens-lacunosum moleculare (O-LM) w/o back-projection neurons. Related classes: CA1 (-)1102 O-LM w/o back-proj neurons (suspended) CA1 (-)1003 oriens-lacunosum moleculare (O-LM) neurons and CA1 (-)1102 oriens-lacunosum moleculare (O-LM) w/o back-projection neurons are also being maintained as suspended classes since A:SR and A:SO were very close calls. Sik (1995) reports that 91.5% of the axon collaterals are in SLM; only 7% are in SO. According to hippocampome rules, this represents a below-threshold presence. Axonal presence in SR is variable but consists mostly of continuing branches, with the exception of McBain's (1994) Fig 4A. Axonal presence in SO is also variable and under threshold. Unless known connections are reported in the future, this presence will not be counted as per hippocampome rules. Zemankovics (2010) contains EP data; Losonczy (2002) and Tricoire (2011) contain chemical marker and EP data. MGE-derived (Tricoire, 2011).

    Firing Pattern
    Images
    Image MissingImage Missing
    Parameters View page
    NASP [Evidence] [Firing Pattern]

    Izhikevich Model
    Parameters Single Compartment Downloads Simulate
    subtype: 1 k=4.47;a= 0.069;b= 74.3;d= 299;C= 73;Vr= -60;Vt= -56.41;Vpeak= 7.99;Vmin= -58.16; Simulate
    Images
    Image Missing
    ModelDB Model
    Model Accession Number PubMed ID
    246546 30713030
    184545 26300744
    138421 17679692
    187604 28009257
    116567 15183510
    135903 21273309

    Sources of Input
    Known sources
    Excitatory or Inhibitory
    CA3 Pyramidal
    CA1 Pyramidal
    CA1 Interneuron Specific LMO-O
    CA1 Interneuron Specific O-Targeting QuadD
    CA1 Interneuron Specific R-O
    CA1 Interneuron Specific RO-O

    Potential sources
    Excitatory or Inhibitory
    CA3c Pyramidal
    CA3 Trilaminar
    CA2 Pyramidal
    CA2 Bistratified
    CA1 Deep Pyramidal
    CA1 Superficial Pyramidal
    CA1 Radiatum Giant
    CA1 Back-Projection
    CA1 Bistratified
    CA1 Hippocampo-subicular Projecting ENK+
    CA1 Ivy
    CA1 Interneuron Specific LMR-O*
    CA1 Recurrent O-LM
    CA1 Recurrent O-LMR*
    CA1 Oriens/Alveus
    CA1 Oriens-Bistratified
    CA1 Oriens-QuadA Projecting
    CA1 O-RPO*
    CA1 Quadrilaminar
    CA1 R-RO*
    CA1 RP-RPO*
    CA1 Schaffer Collateral-Associated
    CA1 Schaffer Collateral-Correlated*
    CA1 SO-SO
    CA1 SO-SO Projecting*
    CA1 Trilaminar
    CA1 Radial Trilaminar
    EC LIII Small Pyramidal
    EC LIII Pyramidal

    Potential sources known to be avoided
    Excitatory or Inhibitory
    none known

    Targets of Output
    Known targets
    Excitatory or Inhibitory
    CA1 Pyramidal
    CA1 Cajal-Retzius
    CA1 Basket
    CA1 Neurogliaform
    CA1 Perforant Path-Associated
    CA1 Schaffer Collateral-Associated

    Potential targets
    Excitatory or Inhibitory
    CA1 Deep Pyramidal
    CA1 Superficial Pyramidal
    CA1 Local-Projecting Cajal-Retzius*
    CA1 Radiatum Giant
    CA1 Axo-axonic
    CA1 Vertical Basket*
    CA1 Basket CCK+
    CA1 Interneuron Specific LM-R
    CA1 Interneuron Specific LMO-O
    CA1 LMR
    CA1 LMR-LM*
    CA1 Interneuron Specific LMR-O*
    CA1 LMR-R*
    CA1 Interneuron Specific LMR-R
    CA1 LMR Projecting
    CA1 Neurogliaform Projecting
    CA1 Interneuron Specific O-Targeting QuadD
    CA1 Oriens/Alveus
    CA1 Perforant Path-Associated QuadD
    CA1 QuadD-RP*
    CA1 Quadrilaminar
    CA1 Radial Trilaminar

    Potential targets known to be avoided
    Excitatory or Inhibitory
    none known

    Oscillation Phase Locking
    Category
    Value
    Theta (deg):153.10
    Theta range:[151.30, 176.20]
    Theta measurements:4
    Theta representative selection:   rats, adult, unknown sex,
    juxtacellular, freely moving
    SWR ratio:0.70
    SWR ratio range:[0.19, 1.10]
    SWR ratio measurements:4
    SWR ratio representative selection:   rats, adult, unknown sex,
    juxtacellular, freely moving
    In vivo firing rate (Hz):15.60
    Firing rate range:[15.30, 22.30]
    Firing rate measurements:4
    Firing rate representative selection:   rats, adult, unknown sex,
    juxtacellular, freely moving
    Other:gamma and 2 others
    Other representative selection:   mice, adult, male,
    juxtacellular, head-fixed awake