DG MOPP
* indicates new v2.0 neuron type
Name Supertype (ID:Family:Type:Subregion)
DG (i)3000 MOPP S100601:Ivy/Neurogliaform Family:MOPP-like:DG

Name derivation
This name best captures the essence of this mixture of cited types and stands for "MOlecular layer Perforant Path-associated."

Synonym(s)
DG cell in the molecular layer associated with the perforant pathway
DG MOPP cell
DG neurogliaform cell
DG NGFC
DG VIP-positive cell projecting to the stratum moleculare

List of articles
Click here to view the list
Amaral D  (2007) The Hippocampus Book
Hippocampal Neuroanatomy
Amaral D, Lavenex P.
The Hippocampus Book, 2007, Pages: 35 - 112
ISBN: 9780195100273
Tags: morphology, connectivity, synapse probabilities
Armstrong C  (2011) J Comp Neurol
Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward gamma-aminobutyric acidergic modulators of entorhinal-hippocampal interplay.
Armstrong C, Szabadics J, Tamas G, Soltesz I.
J Comp Neurol, 2011 Jun 1, 519 (8), Pages: 1476 - 1491
PMID: 21452204; DOI: 10.1002/cne.22577
Tags: morphology, marker, membrane biophysics, connectivity, firing patterns, synapse probabilities
Dyhrfjeld-Johnsen J  (2007) J Neurophysiol
Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data.
Dyhrfjeld-Johnsen J, Santhakumar V, Morgan RJ, Huerta R, Tsimring L, Soltesz I.
J Neurophysiol, 2007 Feb, 97 (2), Pages: 1566 - 1587
PMID: 17093119; DOI: 10.1152/jn.00950.2006
Tags: morphology, connectivity, synapse probabilities
Freund TF  (1996) Hippocampus
Interneurons of the hippocampus.
Freund TF, Buzsaki G.
Hippocampus, 1996, 6 (4), Pages: 347 - 470
PMID: 8915675; DOI: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I
Tags: morphology, connectivity, synapse probabilities
Hajos N  (1996) Eur J Neurosci
Target selectivity and neurochemical characteristics of VIP-immunoreactive interneurons in the rat dentate gyrus.
Hajos N, Acsady L, Freund TF.
Eur J Neurosci, 1996 Jul, 8 (7), Pages: 1415 - 1431
PMID: 8758949; DOI: 10.1111/j.1460-9568.1996.tb01604.x
Tags: morphology, marker, connectivity, synapse probabilities
Han ZS  (1993) Eur J Neurosci
A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus.
Han ZS, Buhl EH, Lorinczi Z, Somogyi P.
Eur J Neurosci, 1993 May 1, 5 (5), Pages: 395 - 410
PMID: 8261117; DOI: 10.1111/j.1460-9568.1993.tb00507.x
Tags: morphology, connectivity, firing patterns, synapse probabilities
Houser CR  (2007) Prog Brain Res
Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity.
Houser CR.
Prog Brain Res, 2007, 163, Pages: 217 - 232
PMID: 17765721; DOI: 10.1016/S0079-6123(07)63013-1
Tags: morphology, marker, connectivity, synapse probabilities
Morgan RJ  (2007) Prog Brain Res
Modeling the dentate gyrus.
Morgan RJ, Santhakumar V, Soltesz I.
Prog Brain Res, 2007, 163, Pages: 639 - 658
PMID: 17765743; DOI: 10.1016/S0079-6123(07)63035-0
Tags: morphology, connectivity, synapse probabilities
Morgan RJ  (2010) Hippocampal Microcircuits: A Computational Modeler's Resource Book
Microcircuit Model of the Dentate Gyrus in Epilepsy
Morgan RJ, Soltesz I.
Hippocampal Microcircuits: A Computational Modeler's Resource Book, 2010, Pages: 495 - 526
ISBN: 9781441909954
Tags: morphology, connectivity, synapse probabilities
Patton PE  (1995) Hippocampus
Connection matrix of the hippocampal formation: I. The dentate gyrus.
Patton PE, McNaughton B.
Hippocampus, 1995, 5 (4), Pages: 245 - 286
PMID: 8589792; DOI: 10.1002/hipo.450050402
Tags: morphology, connectivity, synapse probabilities
Ribak CE  (2007) Prog Brain Res
Ultrastructure and synaptic connectivity of cell types in the adult rat dentate gyrus.
Ribak CE, Shapiro LA.
Prog Brain Res, 2007, 163, Pages: 155 - 166
PMID: 17765717; DOI: 10.1016/S0079-6123(07)63009-X
Tags: morphology, connectivity, synapse probabilities
Santhakumar V  (2008) Computational neuroscience in epilepsy
Modeling circuit alterations in epilepsy: A focus on mossy cell loss and mossy fiber sprouting in the dentate gyrus
Santhakumar V.
Computational neuroscience in epilepsy, 2008, Pages: 89 - 111
ISBN: 9780123736499
Tags: morphology, connectivity, synapse probabilities
Szabo GG  (2017) Cell Reports
Extended Interneuronal Network of the Dentate Gyrus
Szabo GG, Du X, Oijala M, Varga C, Parent JM, Soltesz I.
Cell Reports, 2017, 20 (6), Pages: 1262 - 1268
PMID: 28793251; DOI: 10.1016/j.celrep.2017.07.042
Tags: phases
Vida I  (2010) Hippocampal Microcircuits: A Computational Modeler's Resource Book
Morphology of Hippocampal Neurons
Vida I.
Hippocampal Microcircuits: A Computational Modeler's Resource Book, 2010, Pages: 27 - 68
ISBN: 9781441909954
Tags: morphology, connectivity, synapse probabilities

Supplemental PMIDs
Click here to view the list of PMIDs

List of Hippocampome.org to NeuroMorpho.Org mappings
Click here to view the list of mappings
  • McBain
    • 2009-12-30-12 (fits the general description of "DG MOPP" based on the distribution of axons and dendrites and marker expression)
  • Vida

  • Morphology
    Soma
    DG:SMo
    DG:SMi
    Axons
    DG:SMo
    Dendrites
    DG:SMo

    Representative figure
    A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus.
    Han ZS, Buhl EH, Lorinczi Z, Somogyi P
    Eur J Neurosci, 1993 May 1, 5 (5), pages: 395 - 410
    PMID: 8261117; DOI: 10.1111/j.1460-9568.1993.tb00507.x


    "FIG. 5. (A) Axonal and dendritic arborization of a [dentate gyrus] neuron situated in the molecular layer and having an axonal field associated with the termination zone of the perforant pathway (MOPP [molecular layer perforant path-associated] cell {DG MOPP}, also shown in Fig. 6). Both the dendritic and axonal arborizations are restricted to the outer two-thirds of the molecular layer (ml; a, origin of axon). The apparent location of branches in the inner third of the molecular layer towards the granule cells (gel) is due to a gradual shift in the laminar boundaries caused by the superimposition of serial sections."


    Molecular markers
    Positive
    CoupTF II
    nNOS
    NPY
    RLN
    VIP
    Negative
    AR-beta1 (inference)
    CB (inference)
    CR (inference)
    GABAa\alpha 6 (inference)
    Gaba-a-alpha (multiple confirming inferences)
    mGluR1a (inference)
    PV (inference)
    SOM (multiple confirming inferences)
    vGluT3 (inference)
    Mixed expression
    None known

    Electrophysiological properties
    Key: [range] OR representative value±SD (measurements); Number of sources (total measurements): [min , max]

    Resting membrane potential (Vrest): -75.6±0.9 mV (21); 1 source
    Input resistance (Rin): 147±8 MΩ (21); 1 source
    Time constant (τm): 6.81±0.36 ms (21); 1 source
    Threshold potential (Vthresh): 45.6 mV (1); 1 source
    Fast afterhyperpolaziring potential amplitude (Fast AHP): 14.6 mV (1); 1 source
    Action potential amplitude (APampl): 41.7 mV (1); 1 source
    Slow afterhyperpolarizing potential amplitude (Slow AHP): 2.19 mV (1); 1 source
    Sag ratio: 0.95 (1); 1 source

    Notes
    The VIP-positive neurons are speculated to be interneuron specific. If this is ever proven, then these cells should be separated from the MOPP-NGF cells.

    Firing Pattern
    Images
    Image MissingImage Missing
    Parameters View page
    ASP. [Evidence] [Firing Pattern]
    D.NASP [Evidence] [Firing Pattern]

    Izhikevich Model
    Parameters Single Compartment Downloads Simulate
    subtype: 1 k=0.67;a= 0.002;b= -32.42;d= 163;C= 250;Vr= -74.67;Vt= -6.83;Vpeak= 17.03;Vmin= -42.93; Simulate
    subtype: 2 k=5.38;a= 0.006;b= 23.84;d= 30;C= 89;Vr= -75.85;Vt= -67.71;Vpeak= -31.48;Vmin= -77.05; Simulate
    Images
    Image MissingImage Missing
    ModelDB Model
    Model Accession Number PubMed ID
    124291 19815518
    185355 25269417
    124291 19815518
    185355 25269417

    Sources of Input
    Known sources
    Excitatory or Inhibitory
    DG MOPP

    Potential sources
    Excitatory or Inhibitory
    DG Cajal-Retzius*
    DG Local-Projecting Cajal-Retzius*
    DG COM-MOPP*
    DG HIPP
    DG Recurrent HIPP*
    DG HIPP-CAP*
    DG Recurrent HIPP-CAP*
    DG HIPROM
    DG MOLAX
    DG Molecular Layer*
    DG Outer Molecular Layer
    DG Total Molecular Layer
    DG Neurogliaform
    DG Wide-Arbor Neurogliaform*
    CA3 Spiny Lucidum
    CA3 Perforant Path-Associated Projecting*
    CA1 Local-Projecting Cajal-Retzius*
    CA1 LMR Projecting
    CA1 Neurogliaform Projecting
    CA1 Perforant Path-Associated
    EC LI-II Pyramidal-Fan
    MEC LII Stellate
    EC LII-III Pyramidal-Tripolar
    EC LIV-V Pyramidal-Horizontal
    MEC LV Pyramidal

    Potential sources known to be avoided
    Excitatory or Inhibitory
    none known

    Targets of Output
    Known targets
    Excitatory or Inhibitory
    DG Granule
    DG HICAP
    DG MOPP

    Potential targets
    Excitatory or Inhibitory
    DG Adult-Born Immature Granule*
    DG Hilar Ectopic Granule
    DG Semilunar Granule
    DG Cajal-Retzius*
    DG Local-Projecting Cajal-Retzius*
    DG Mossy MOLDEN
    DG AIPRIM
    DG Axo-axonic
    DG Granulosum-targeting Axo-axonic*
    DG Axo-axonic GRALDEN*
    DG Basket
    DG Basket GRALDEN*
    DG Basket CCK+
    DG Interneuron Specific COLTAR*
    DG COM-MOPP*
    DG Interneuron Specific IMOT*
    DG Interneuron Specific HIMOLD*
    DG Interneuron Specific HIPRO*
    DG MOLAX
    DG Molecular Layer*
    DG Outer Molecular Layer
    DG Total Molecular Layer
    DG Neurogliaform
    DG Wide-Arbor Neurogliaform*
    CA1 Neurogliaform Projecting

    Potential targets known to be avoided
    Excitatory or Inhibitory
    none known

    Oscillation Phase Locking
    Category
    Value
    SWR ratio:5.73
    SWR ratio range:[5.73, 5.73]
    SWR ratio measurements:1
    SWR ratio representative selection:   mice, adult, male,
    juxtacellular, freely moving